LM3886 Done Right

The PCB layout is a large part of the circuit – some say the layout is the circuit. This is certainly true for high-end audio design and also for high-power design. Given these facts and the number of LM3886 PCB layouts available, it is understandable that a significant amount of anxiety surrounds the choice of which one to purchase. A good layout will ensure that the LM3886 lives up to its data sheet specs. A poor layout will, best case, result in an amplifier that performs poorly and fails to meet the data sheet specifications of the LM3886 and, worst case, result in an unstable amplifier. My goal with the LM3886 Done Right (LM3886DR) is to ease the anxiety by combining a circuit which includes all the necessary components for good amplifier stability and good RF immunity with a PCB layout that is second to none. In addition, this circuit is intended to be a relatively inexpensive and more beginner-friendly project than, for example, the Modulus-86. With some careful parts scrounging, it is realistic to complete a stereo LM3886DR with power supply and home made chassis for less than $200.

Key Features

  • LM3886 layout fully optimized for high signal integrity.
  • All components needed for good amplifier stability included in the circuit.
  • Elaborate use of planes and pours to minimize ground bounce and ensure good THD performance across the audible frequency spectrum for the best audio quality possible.
  • Input RFI/EMI filter prevents all pops and clicks from the switching of heavy loads as well as buzz associated with cell phones, WiFi, and other RF interference sources.
  • Mono board to allow for mono block construction. Two boards are needed for a stereo build.
  • On-board mounting brackets for attachment to heat sink.
  • Molex Mega-Fit 23 A rated connectors used for power supply and speaker out connections. BOM includes pre-crimped wire leads and mating connectors.
  • 3.00 x 2.45 inch board size (76 x 62 mm) with mounting holes suitable for machine screws up to 3.8 mm in diameter (UNC #6-32).
  • 25+ page detailed design documentation provided with the board. The documentation includes a link to a project set up with Mouser Electronics for ease of ordering.

A completed LM3886DR is shown below.


Build Budget

The cost of parts for the LM3886DR is just shy of $27 per board.

In addition to the parts listed in the project set up with Mouser, you will need 50 cm of AWG 18 (1.0 mm diameter) enamelled magnet wire. Solid core insulated AWG 20 hookup wire may be used in a pinch. You will also need some thermally conductive paste (Wakefield #120, Arctic Silver, et al.) and a heat sink for the LM3886.

The biggest cost drivers are the enclosure and power supply. For enclosures, ModuShop in Italy offers excellent products at a very reasonable cost. Some of their products are available through the DIY Audio Shop. The Dissipante series would work well with up to a 4-channel LM3886DR. For the power supply, I recommend an SMPS-86 or a Power-86.


Simplified Schematic

The simplified schematic of the LM3886DR is shown below.


The RFI/EMI filter on the input of the amplifier prevents the annoying clicks and pops from the switching of heavy loads, such as refrigerators, electric furnaces, and the like. It also removes the interference caused by cell phones, WiFi routers, and such to allow for the best audio performance.

Observant readers will recognize the noise gain compensation applied at the inputs of the LM3886. This compensation is necessary to avoid quasi-oscillation near clipping and is necessary to get the full rated output power from the LM3886. A series RC network is added in the feedback path to ensure a clean and fast transient response of the LM3886DR. A snubber or Zobel network (R+C) and Thiele network (L || R) are added on the output to ensure good amplifier stability even with a capacitive load.



The full set of specifications for the LM3886 Done Right are tabulated below.

Parameter Value Notes
Output Power 45 W 8 Ω
THD 0.0017 % 1 W, 8 Ω, 1 kHz
THD 0.0016 % 45 W, 8 Ω, 1 kHz
THD+N 0.0019 % 45 W, 8 Ω, 1 kHz, 22 kHz BW
Output Power 80 W 4 Ω
THD 0.0037 % 80 W, 4 Ω, 1 kHz
THD+N 0.0042 % 80 W, 4 Ω, 1 kHz, 22 kHz BW
IMD: SMPTE 60 Hz + 7 kHz @ 4:1 0.0060 % 45 W, 8 Ω
IMD: DFD 18 kHz + 19 kHz @ 1:1 0.0015 % 45 W, 8 Ω
Multi-Tone IMD Residual -85 dB AP 32-tone, 45 W, 8 Ω
Gain 26.0 dB
Input Sensitivity 950 mV RMS 45 W, 8 Ω
Bandwidth 2.4 Hz – 90 kHz 1 W, -3 dB
Full-Power Bandwidth 90 kHz
Slew Rate 15 V/µs  8 Ω || 1 nF load
Total Integrated Noise and Residual Mains Hum 33 µV 20 Hz – 20 kHz, A-weighted, Power-86 w/Antek AS-2222
Total Integrated Noise and Residual Mains Hum 43 µV 20 Hz – 20 kHz, Unweighted, Power-86 w/Antek AS-2222
Residual Mains Hum -104 dBV Power-86 w/Antek AS-2222
Dynamic Range (AES17) > 112 dB 1 kHz
All parameters are measured using a ±30 V regulated power supply unless otherwise noted.



The performance measurements of the LM3886 Done Right are shown below. The THD+N vs output power matches the performance specified in the LM3886 data sheet.

LM3886DR Rev. 1.0_ THD+N vs Output Power (1 kHz, 8 ohm, 22 kHz BW)

The THD+N vs frequency is shown below. The performance of the LM3886DR is actually better than the data sheet performance of the LM3886! This speaks volumes to the quality of the layout of the LM3886DR.

LM3886DR Rev. 1.0_ THD+N vs Frequency (45 W, 8 ohm, 80 kHz BW)

The THD at 1 W output is quite low as seen in the harmonic spectrum below. It is interesting to note the mains-related IMD spectral components. At 120 dB below the fundamental signal, they’re hardly an issue. Just an interesting testament to the power supply rejection of the LM3886.

LM3886DR Rev. 1.0_ Harmonic Spectrum (1 W, 8 ohm, 1 kHz)

The mains hum itself is actually very low as shown in the graph below. This measurement was taken using a Power-86 and a toroidal mains transformer.

LM3886DR Rev. 1.0_ Residual Mains Hum (Power-86 + Antek AS-2222 Toroid)

The multi-tone IMD is shown below. The tallest offender checks in at -85 dBV.

LM3886DR Rev. 1.0_ Multi-Tone IMD (45 W, 8 ohm, AP 32-tone)

The 18 kHz + 19 kHz (1:1) two-tone IMD test is often used as an indicator of the loop gain available at 20 kHz. As shown below, the IMD of the LM3886DR is quite good.

LM3886DR Rev. 1.0_ IMD (DFD 18+19 kHz @ 1_1, 45 W, 8 ohm)

The 60 Hz + 7 kHz SMPTE IMD, on the other hand, is often used to tease out thermal issues in the amplifier. As shown below, the LM3886DR passes with flying colours.

LM3886DR Rev. 1.0_ IMD (SMPTE 60 Hz + 7 kHz @ 4_1, 45 W, 8 ohm)

Finally the gain measured within the audio range. It’s very flat with a slight rolloff starting around 20 kHz.

LM3886DR Rev. 1.0_ Frequency Response (1 W, 8 ohm)